Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 13(1): 47-57, 2005 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-15582451

RESUMO

Over the past decade, multiphoton microscopy has progressed from a photonic novelty to a technique whose application is currently experiencing exponential growth in the biological sciences. A novel application of this technology with significant therapeutic potential is the control of drug activity by multiphoton photolysis of caged therapeutics. As an initial case study, the potent isoform selective inhibitor N-(3-(aminomethyl)benzyl) acetamidine (1400W) of inducible nitric oxide synthase (iNOS) has been conjugated to a caging molecule 6-bromo-7-hydroxy-4-hydroxyquinoline-2-ylmethyl acetyl ester (Bhc). Here we present the first report of a bulk therapeutic effect, inhibition of nitric oxide production, in mammalian cell culture by multiphoton photolysis of a caged drug, Bhc-1400W. Mouse macrophage RAW 264.7 cells induced with bacterial lipopolysaccharides to express iNOS were used to assess the therapeutic value of the conjugated inhibitor. Both 1400W and Bhc-1400W are stable in metabolically active cells and an optimal time interval for the photorelease of the inhibitor was determined. The ratios of the IC(50) values of Bhc-1400W over 1400W calculated in the presence of iNOS enzyme and in RAW 264.7 cell culture are 19 and 100, respectively, indicating that a broad therapeutic range exists in cell culture. Multiphoton uncaging protocols and therapeutic doses of inhibitors were not cytotoxic. Photocontrol of LPS induced nitric oxide production was achieved in mammalian cell culture using a single laser focal volume. This technology has the potential to control active drug concentrations in vivo, a lack of which is one of the main problems currently associated with systemic drug administration.


Assuntos
Inibidores Enzimáticos/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico/biossíntese , Animais , Linhagem Celular , Inibidores Enzimáticos/química , Camundongos , Óxido Nítrico Sintase Tipo II , Fótons
2.
Biochemistry ; 43(6): 1507-19, 2004 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-14769027

RESUMO

Plasminogen activator inhibitor-1 (PAI-1) is a 43 kDa protein involved in the regulation of fibrinolysis. PAI-1 is the principal inhibitor of tissue-type plasminogen activator (t-PA), trapping the proteinase as an acyl-enzyme covalent complex (approximately 105 kDa). Four single tryptophan mutants of PAI-1 have been constructed in which three of the four tryptophan residues (Trp86, Trp139, Trp175, and Trp262) were replaced with phenylalanine. Biosynthetic incorporation of 5-fluorotryptophan (5F-Trp) into wild-type PAI-1 (5FW wtPAI-1) and the single tryptophan mutants (5FW86, 5FW139, 5FW175, and 5FW262) was achieved, allowing a (19)F NMR spectroscopic study of PAI-1 in its active and cleaved forms and in complex with t-PA. The (19)F NMR spectrum of active 5FW wtPAI-1 shows four clearly resolved peaks at -39.20, -49.26, -50.74, and -52.57 ppm relative to trifluoroacetic acid at 0 ppm. Unequivocal assignments of these four resonances in the spectrum of 5FW wtPAI-1 to specific tryptophan residues were accomplished by measuring the chemical shifts of the (19)F resonances of the single tryptophan mutants. There was close agreement between the resonances observed in 5FW wtPAI-1 and of those in the mutants for all three protein forms. This would imply little structural perturbation in the local structures of the tryptophan residues resulting from substitution by phenylalanine. The 5FW wtPAI-1 was observed to have lower second-order rate constant (k(app)) for the inhibition of t-PA than the natural tryptophan wtPAI-1, suggesting that the decreased activity may result from a small structural effect of the fluorine substituent of the indole ring. Further alterations in the k(app) and the stoichiometry of inhibition (SI) were observed in each of the mutants indicating an effect of the three tryptophan to phenylalanine mutations. Detailed interpretation of the (19)F NMR spectra of the PAI-1 mutants provides insights into the local segmental structure of the active form of the proteins and the structural changes that occur in the cleaved and t-PA complexed forms.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/química , Triptofano/análogos & derivados , Flúor/química , Humanos , Hidrólise , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Inibidor 1 de Ativador de Plasminogênio/biossíntese , Inibidor 1 de Ativador de Plasminogênio/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/genética , Relação Estrutura-Atividade , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Ativador de Plasminogênio Tecidual/química , Triptofano/química , Triptofano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...